Pages

Subscribe:

Sabtu, 04 Juni 2011

Nanotechnology (Teknologi-Nano)


Animasi nanotiub karbon 3D

Sejarah Nanotechnology (Teknologi-Nano)
Nanoteknologi melangkaui lewat abad ke-19 apabila sains koloid mula-mula berakar umbi. Walaupun tidak dirujuk sebagai "nanoteknologi" ketika itu, teknik-teknik yang sama masih diterimaguna pada hari ini untuk mensintesiskan banyak daripada bahan-bahan pada saiz nanometer.
Sebutan pertama bagi sesetengah konsep nanoteknologi (tetapi sebelum penggunaan nama itu) adalah dalam "Masih Terdapat Banyak Ruang di Bawah" ("There's Plenty of Room at the Bottom)", sebuah ceramah yang disampaikan oleh ahli fizik Richard Feynman kepada Persatuan Fizikal Amerika di Caltech pada 29 Disember 1959.
Istilah "nanoteknologi" ditakrifkan buat pertama kali oleh Norio Taniguchi, Profesor Universiti Sains Tokyo, pada tahun 1974 dalam kertas kerjanya, "Mengenai Konsep Asas 'Nanoteknologi'," sebagai berikut: "'Nanoteknologi' terdiri terutamanya daripada pemprosesan bahan-bahan melalui pemisahan, penyatuan, dan pencacatan bentuk oleh sebiji atom atau sebiji molekul."
Pada dekad 1980-an, idea asas untuk takrif ini diperiksa dengan teliti oleh Dr. Eric Drexler. Beliau mempromosikan keertian teknologi untuk fenomena-fenomena dan peranti-peranti skala nano melalui ucapan-ucapan dan buku-bukunya, "Enjin-enjin Penciptaan: Era Nanoteknologi Yang Akan Datang" (Engines of Creation: The Coming Era of Nanotechnology) dan "Sistem-sistem Nano: Jentera Molekul, Pengilangan dan Pengiraan" (Nanosystems: Molecular Machinery, Manufacturing, and Computation, ISBN 0-471-57518-6) dan disebabkan beliau, istilah itu memperoleh maksud kini.
Nanoteknologi dan nanosains bermula pada awal 1980-an dengan dimajukan dua perkara: kelahiran sains kelompok dan penciptaan mikroskop penerowongan imbasan (scanning tunneling microscope - STM). Kemajuan ini mendorong kepada penemuan fuleren pada 1986 dan nanotiub karbon beberapa tahun kemudian. Mikroskop daya atom dan mikroskop terowong imbasan merupakan dua versi pertama pengesan yang memperkenalkan nanoteknologi.
Teknologi kini menggunakan istilah 'nano' tidak terlalu berkaitan dan agak jauh dengan matlamat teknologi perubahan dan istimewa bagi cadangan pengilangan molekul, tetapi istilah tersebut sering membawa kepada idea tersebut. Maka, mungkin berbahaya yang "buih nano" akan terbentuk daripada penggunaan istilah tersebut oleh para saintis dan usahawan untuk mendapatkan keuntungan, tanpa menghiraukan (dan mungkin kurang) minat dalam kemungkinan perubahan kerja yang lebih kelihatan berwawasan tinggi dan jauh.
Peralihan sokongan yang berasaskan janji cadangan seperti pengilangan molekul untuk projek yang lebih biasa juga mungkin akan menimbulkan pandangan sinis yang tidak wajar terhadap matlamat paling hebat tersebut: seorang pelabur yang tertarik oleh pengilangan molekul yang melabur dalam 'nano' hanya untuk mendapatkan yang sains bahan tipikal memperolehkan keputusan yang mungkin menyimpulkan yang semua idea tersebut hanyalah satu gembar-gembur, tidak mampu untuk menghargainya yang semua ini boleh dimungkinkan dengan kekaburan istilah itu. Dalam kata lain, sesetengah telah berbalah yang publisiti dan kecekapan dalam bidang yang berkaitan yang dijanakan oleh bantuan seperti projek 'nano ringan' adalah berharga, walaupun tidak langsung, dalam kemajuan kepada matlamat nanoteknologi.
Nanoteknologi merupakan bidang kesimpulan yang didokumenkan dalam monograf nota kaki "Gembar-gembur Nano: Kebenaran di Sebalik Desas-desus Teknologi Nano" (Nano-Hype: The Truth Behind the Nanotechnology Buzz). Kajian yang telah diterbitkan tersebut (dengan kata-kata oleh Mihail Roco, ketua NNI) menyimpulkan yang apa yang dijual sebagai "nanoteknologi" merupakan sebuah penyusunan semula sains bahan, yang membawa kepada "industri nanotek yang dibina hanya berasaskan penjualan tiub nano, wayar nano dan yang sepertinya" yang akan "berakhir dengan beberapa pembekal menjual barangan sampingan dengan jumlah yang banyak."
Bahan yang bertambah secara nanoteknologi akan mengurangkan berat dan diikuti dengan bertambahnya kestabilan dan kegunaan.
Risiko nanoteknologi boleh diluaskan kepada tiga bagian:
§  risiko kepada kesihatan dan persekitaran yang berpunca daripada zarah dan jirim nano
§  risiko yang disebabkan oleh pengilangan atau penghasilan molekul (atau teknologi nano lain)
§  risiko yang datangnya daripada masyarakat sendiri.

Pengertian Nanotechnology (Teknologi-Nano)
Nanoteknologi ialah satu cabang sains yang menumpukan kepada jirim-jirim pada saiz antara 1 hingga 100 nanometer (1 nm = 10−9 meter). Pada dasarnya, nanoteknologi ialah peluasan sains-sains yang sedia ada ke skala nano. Salah satu aspek skala nano yang terpenting adalah bahawa semakin objek-objek menjadi kecil, semakin besar nisbahnya antara luas permukaan dengan isi padu. Fenomena ini telah memungkinkan penciptaan bahan-bahan yang menarik serta penggunaan-penggunaan yang baru. Umpamanya, bahan-bahan yang legap menjadi lut sinar (tembaga); bahan-bahan yang stabil menjadi bahan boleh bakar (aluminium); pepejal menjadi cecair pada suhu bilik (emas); dan penebat menjadi konduktor (silikon). Kejayaan-kejayaan cemerlang dalam nanoteknologi telah menghasilkan alat-alat solek dan losen-loesen pelindung cahaya matahari yang lebih baik, serta seluar kalis air.
Struktur-struktur nano terdiri daripada tiga jenis, berdasarkan bilangan dimensinya:
§  satu dimensi: permukaan objek antara 0.1 dan 100 nm;
§  dua dimensi: nanotiub yang mempunyai diameter antara 0.1 dan 100 nm;
§  tiga dimensi: zarah dengan saiz antara 0.1 dan 100 nm.

Teknologi-Nano adalah pembuatan dan penggunaan materi atau devais pada ukuran sangat kecil. Materi atau devais ini berada pada ranah 1 hingga 100 nanometer (nm). Satu nm sama dengan satu-per-milyar meter (0.000000001 m), yang berarti 50.000 lebih kecil dari ukuran rambut manusia. Saintis menyebut ukuran pada ranah 1 hingga 100 nm ini sebagai skala nano (nanoscale), dan material yang berada pada ranah ini disebut sebagai kristal-nano (nanocrystals) atau material-nano (nanomaterials).
Skala nano terbilang unik karena tidak ada struktur padat yang dapat diperkecil. Hal unik lainnya adalah bahwa mekanisme dunia biologis dan fisis berlangsung pada skala 0.1 hingga 100 nm. Pada dimensi ini material menunjukkan sifat fisis yang berbeda; sehingga saintis berharap akan menemukan efek yang baru pada skala nano dan memberi terobosan bagi teknologi.
Beberapa terobosan penting telah muncul di bidang nanoteknologi. Pengembangan ini dapat ditemukan di berbagai produk yang digunakan di seluruh dunia. Sebagai contohnya adalah katalis pengubah pada kendaraan yang mereduksi polutan udara, devais pada komputer yang membaca-dari dan menulis-ke hard disk, beberapa pelindung terik matahari dan kosmetik yang secara transparan dapat menghalangi radiasi berbahaya dari matahari, dan pelapis khusus pakaian dan perlengkapan olahraga yang dapat meningkatkan kinerja dan performa atlit. Hingga saat ini para ilmuwan yakin bahwa mereka baru menguak sedikit dari potensi teknologi nano.
Teknologi nano saat ini berada pada masa pertumbuhannya, dan tidak seorang pun yang dapat memprediksi secara akurat apa yang akan dihasilkan dari perkembangan penuh bidang ini di beberapa dekade kedepan. Meskipun demikian, para ilmuwan yakin bahwa teknologi nano akan membawa pengaruh yang penting di bidang medis dan kesehatan; produksi dan konservasi energi; kebersihan dan perlindungan lingkungan; elektronik, komputer dan sensor; dan keamanan dan pertahanan dunia.

Definisi Partikel Nanotechnology (Teknologi-Nano)
Struktur nano telah dikemukakan dan diidentifikasi oleh Mihail C. Rocco dari National Science Fondation (NSF) Amerika Serikat melalui situs Sciam.com, yaitu dimana struktur nano memiliki sejumlah unsur penting dengan dimensi antara satu hingga 100 nano meter yang didesain melalui proses penyatuan secara kimia dan fisika. Khayalan para peneliti untuk memproduksi benda-benda berstruktur nano telah digambarkan dalam buku Enginers of Creations karya K. Eric Drexler pada tahun 86, yang isinya antara lain menyatakan bahwa teknologi nano dimasa depan akan dapat memberikan solusi dari berbagai permasalahan global yang sekarang ini belum terpecahkan, seperti penyakit yang belum dapat disembuhkan, memperpanjang usia dll.
Definisi Partikel nano dalam Teknologi nano meliputi cakupan yang sangat luas, sehingga perlu adanya persamaan persepsi di kalangan ilmuwan. Royal Society dan Royal Academy of Engineering di UK telah mendefinisikan sebagai berikut :
·         Nanoscience : studi tentang fenomena dan manipulasi dari material pada skala atom, yang mana memiliki sifat yang berbeda dibandingkan sifat dari skala makro.
·         Nanotechnology : desain, karakterisasi, produksi, dan aplikasi dari struktur, alat, dan sistem dengan mengontrol bentuk dan ukuran dari material pada skala nano. Dalam artikel ini, partikel nano didefinisikan sebagai material berdiameter # 250 nm.

Perkembangan Nanotechnology (Teknologi-Nano)
Jepang dan AS merupakan dua negara terdepan dalam riset nanoteknologi. Berdasarkan data tahun 2002, pemerintah Jepang mengeluarkan dana riset US$1 miliar, sementara AS US$550 juta, dan Uni Eropa US$450 juta. Jepang memulai risetnya pada 1985. Untuk itu pemerintah Jepang, melalui Federasi Organisasi Ekonomi Jepang, Kaidanren, membentuk Expert Group on Nanotechnology sebagai motor penelitian nanoteknologi. AS mulai serius mengembangkan nanoteknologi di era Bill Clinton, yang tahun 2000 lalu mendirikan National Nanotechnology Initiative. 
Selain badan pemerintahan, perusahaan swasta juga serius mengadakan riset pengembangan nanoteknologi. IBM, misalnya, melalui IBM Zurich Research Laboratory yang dipimpin oleh Petter Yettiger dan Gerd Binning, sedang mengembangkan instrumen penyimpan data sebesar jarum nano dengan teknik scanning tunneling microscope. Dengan teknologi ini, IBM mampu menyimpan 25 juta halaman buku dalam alat penyimpanan yang ukurannya hanya sebesar perangko (bandingkan dengan hard disk yang ada saat ini). 
Prototipe alat penyimpan data ini akan dinamakan Millipede. Tak mau kalah, Intel Corporation pun mengembangkan prosesor yang memiliki kemampuan sepuluh kali lipat dibanding Pentium 4, yang rencananya dilepas ke pasar pada 2007.
Bagaimana dengan Indonesia? Kita juga tak kalah. Adalah PT Dirgantara Indonesia, bekerja sama dengan Pusat Teknologi Elektronika Dirgantara dari Lembaga Penerbangan dan Antariksa Nasional (LAPAN), merancang satelit nano yang dinamakan Indonesia nano satelit-1 (Inasat-1). Mochtar Riady dari Grup Lippo dan Prof. Yohanes Surya (pelopor Tim Olimpiade Fisika Indonesia) dan kawan-kasan juga telah mendirikan Center for Nanotechnology. Dengan ukuran lebih kecil, lebih kuat dan lebih efisien. Hal ini akan berdampak positif bagi perkembangan teknologi. Bahkan, kini sedang dikembangkan komputer quantum dengan nanoteknologi. 

Manfaat Nanotechnology (Teknologi-Nano)
Bidang Kesehatan

Nanoteknologi sudak banyak digunakan dalam bidang sains, antara lain biomedis, elektronik, magnetik, optik, IT, ilmu material, komputer, tekstil, kosmetika, bahkan obat-obatan. Sebagian besar obat-obatan dan kosmetika yang beredar di pasaran saat ini bekerjanya kurang optimal disebabkan karena zat aktifnya :
1.      memiliki tingkat kelarutan yang rendah.
2.      membutuhkan lemak agar dapat larut.
3.      mudah teragregasi menjadi partikel besar
4.      tidak mudah diabsorpsi dan dicerna

Terobosan nanoteknologi dalam bidang kosmetika dan obat-obatan mampu menciptakan bahan kosmetika dan obat-obatan dengan efektivitas yang jauh lebih baik. Sebagai contoh adalah penggunaan liposom dalam formula obat dan kosmetika.
Liposom adalah vesikel berbentuk spheris dengan membran yang terbuat dari dua lapis fosfolipid (phospholipid bilayer), yang digunakan untuk menghantarkan obat atau materi genetik ke dalam sel. Liposom dapat dibuat dari fosfolipid alamiah dengan rantai lipid campuran ataupun komponen protein lainnya. Bagian phospholipid bilayer dari liposom dapat menyatu denganbilayer yang lain seperti membran sel, sehingga kandungan dari liposom dapat dihantarkan ke dalam sel. Dengan membuat liposom dalam formula obat atau kosmetika, akhirnya bahan yang tidak bisa melewati membran sel menjadi dapat lewat. Manfaat sistem penghantaran zat aktif kosmetika dengan menggunakan liposom berukuran 90 nm adalah :
1.        mampu menghantarkan zat aktif sampai lapisan bawah kulit.
2.        mampu menghantarkan zat aktif lebih cepatk, sehingga didapatkan recovery yang lebih cepat pula.

Dalam bidang kesehatan, melalui nanoteknologi dapat diciptakan "mesin nano" yang disuntikan ke dalam tubuh guna memperbaiki jaringan atau organ tubuh yang rusak. Penderita hipertensi, misalnya, kini tak perlu lagi disuntik atau mengonsumsi obat, cukup hanya disemprot saja ke bagian tubuh tertentu. Nanoteknologi mencakup pengembangan teknologi dalam skala nanometer, biasanya 0,1 sampai 100 nm (satu nanometer sama dengan seperseribu mikrometer atau sepersejuta milimeter). Untuk industri logam, dapat diciptakan sebuah materi logam alternatif yang murah, ringan dan efisien, yang dapat menekan biaya produksi kendaraan, mesin dan lainnya. Nanoteknologi telah dapat merekayasa obat hingga dapat mencapai sasaran dengan dosis yang tepat, termasuk peluang untuk mengatasi penyakit-penyakit berat seperti tumor, kanker, HIV dan lain lain.

Bidang Industri
Aplikasi nanoteknologi dalam industri sangat luas. Dengan nanoteknologi, kita bisa membuat pesawat ruang angkasa dari bahan komposit yang sangat ringan tetapi memiliki kekuatan seperti baja. Kita juga bisa memproduksi mobil yang beratnya hanya 50 kilogram. Industri fashion pun tidak ketinggalan. Mantel hangat yang sangat tipis dan ringan bisa menjadi tren di masa mendatang dengan bantuan nanoteknologi. 
Berbagai terobosan dapat dilakukan dengan nanoteknologi untuk menggantikan bahan baku industri yang kian langka. Jepang, misalnya, pada 1997 membuat proyek ultra baja untuk mengembangkan teknologi konservasi baja. Baja super ini dilaporkan memiliki kekuatan dua kali lipat dari baja biasa, sehingga pemakaiannya dapat lebih efisien. Hal ini dapat menjadi solusi bagi krisis baja yang melanda dunia beberapa bulan terakhir akibat melonjak tajamnya permintaan baja dari Cina.Diperkirakan tahun 2010, produk-produk industri dalam skala apa pun akan menggunakan material hasil rekayasa nanoteknologi. Tidak heran kalau Bill Clinton-saat menjabat Presiden AS-sejak 1993 telah menginstruksikan kepada National Science and Technology Council (NSTC) untuk meriset bidang nanoteknologi ini. (dapat dilihat di www.whitehouse.gov/WH/EOP/OSTP/NSTC/). Perkembangan pesat ini akan mengubah wajah teknologi pada umumnya karena nanoteknologi merambah semua bidang ilmu. Tidak hanya bidang rekayasa material seperti komposit, polimer, keramik, supermagnet, dan lain-lain. Bidang-bidang seperti biologi (terutama genetika dan biologi molekul lainnya), kimia bahan dan rekayasa akan turut maju pesat. Misalnya, manusia akan mengecat mobil dengan cat nanopartikel yang mampu memantulkan panas sehingga kendaraan tetap sejuk walau diparkir di panas terik matahari. Atau, kawat tembaga akan sangat jarang digunakan (terutama dalam hardware computer) karena digantikan dengan konduktor nanokarbon yang lebih tinggi konduktivitasnya.

Bidang Luar Angkasa
Nanoteknologi juga sudah berhasil menyodorkan suatu material hebat yang sangat ringan, tetapi kekuatannya 100 kali lebih kuat dari baja! Material hebat ini diberi nama Carbon Nano-Tube (CNT). Material ini hanya tersusun dari atom karbon (C), seperti grafit dan berlian.
Kuat tetapi sangat ringan sehingga menara dapat dibuat lebih tinggi dan kabel dapat dibuat lebih panjang dan kuat tanpa takut jatuh/roboh karena beratnya sendiri. Hal berikut yang sangat dibutuhkan adalah sesuatu yang cukup berat yang mengorbit mengelilingi bumi. Asteroid dapat dimanfaatkan untuk tujuan ini! Asteroid ini berfungsi sebagai beban yang menstabilkan kabel serta satelit geostasioner yang sedang mengorbit itu. Tanpa beban penstabil (counterweight), kabel dan satelit bisa jatuh menimpa bumi karena tertarik gravitasi, walaupun bahan konstruksinya merupakan material yang sangat ringan. Asteroid ini nantinya dihubungkan dengan satelit menggunakan kabel yang sama. Asteroid ini dapat diarahkan supaya mengorbit pada ketinggian tertentu mengelilingi bumi dengan cara menembaknya dengan rudal. Tabrakan dengan rudal tersebut dapat menggeser posisi asteroid sehingga berada pada jangkauan gravitasi bumi. Dengan demikian asteroid akan terus mengorbit mengelilingi bumi pada ketinggian yang sama. Rencana konstruksi bangunan dan lintasan/kabelnya tampaknya sudah cukup baik. Lalu bagaimana dengan 'lift'nya sendiri? Yang pasti bentuknya tidak sama dengan lift yang biasa kita lihat di gedung-gedung bertingkat. Lift ke luar angkasa ini berupa sebuah pesawat luar angkasa yang akan membawa penumpang dari bumi menuju satelit yang sedang mengorbit. Pesawat ini berbeda dengan pesawat luar angkasa yang saat ini digunakan para astronot untuk menjalankan misi-misi mereka.

Bidang Teknologi Tahan Gempa 
Nanoteknologi jadikan beton kokoh dan tahan gempa. Konstruksi bangunan menjadi dua kali lebih kokoh, tahan gempa, kedap air laut dengan ditemukannya bahan konstruksi nanosilika, suatu jenis mineral yang melimpah ruah di Indonesia dan diolah melalui teknologi nano.Dengan mencampur beton dengan 10 persen bahan nano-silica, kekuatan bertambah menjadi dua kali lipatnya.

Bidang Teknologi Informasi
Dunia informatika dan komputer/elektronik bisa menikmati adanya kuantum yang mampu mengirimkan data dengan kecepatan sangat tinggi. Superkomputer di masa depan tersusun dari chip yang sangat mungil, tetapi mampu menyimpan data jutaan kali lebih banyak dari komputer yang kita gunakan saat ini. Begitu kecilnya superkomputer itu, kita mungkin hanya bisa melihatnya dengan menggunakan mikroskop cahaya/elektron. Peran teknologi nano dalam pengembangan teknologi informasi (IT,information technology), sudah tidak diragukan lagi. Bertambahnya kecepatan komputer dari waktu ke waktu, meningkatnya kapasitas hardisk dan memori, semakin kecil dan bertambahnya fungsi telepon genggam, adalah contoh-contoh kongkrit produk teknologi nano di bidang IT. 
Gambaran mudahnya, bila ukuran satu buah transistor bisa dibuat lebih kecil maka kepadatan jumlah transistor pada ukuran chip yang sama secara otomatis akan menjadi lebih besar. Dalam pembuatan LSI (large scale integrated sedapat mungkin jumlah transistor dalam satu chip bisa diperbanyak. Sebagai contoh, tahun 2005, INTEL berhasil meluncurkan 70 Megabit SRAM (static random access memory) yang dibuat dengan teknologi nano proses tipe 65 nanometer (nm). Pada produk baru ini, di dalam satu chip berisi lebih dari 500 juta buah transistor, dimana lebih maju dibanding teknologi processor tipe 90 nm yang dalam satu chipnya berisi kurang lebih 200 juta transistor. Diperkirakan ke depannya, sejalan dengan terus majunya teknologi nano, ukuran transistor terus akan mengecil sesuai dengan hukum Moore dan processor tipe 45 nm akan masuk pasar tahun 2007, dan selanjutnya tahun 2009 akan processor 32 nm.

Etika Dalam Penerapan Nanotechnology (Teknologi-Nano)
Perkembangan nanoteknologi pada saat ini terus berkembang seiring dengan sejalannya waktu. Nanoteknologi akan terus mengalami kemajuan karena manusia akan selalu berpikir kritis dan kreatif untuk menciptakan nanoteknologi.
Semakin berkembangnya nanoteknologi maka semakin diperlukannya penerapan etika dalam perkembangan nanoteknologi. Etika dalam nanoteknologi mencakup penerapan standar-standar etika dalam pemilihan, perencanaan, penerapan, dan pengawasan teknologi untuk mencegah terjadinya kegagalan teknologi yang merugikan kepentingan publik. Selain itu, dengan adanya etika atau suatu langkah yang benar dalam menciptakan nanoteknologi, manusia dapat mempertimbangkan keputusan yang diambil dan berfikir dampak negative yang akan ditimbulkan sehingga tidak merugikan banyak pihak.
Pada saat ini banyak para ahli science yang menciptakan nanoteknologi hanya berorientasi pada kebutuhan industri tanpa pernah peduli akibat dari teknologi yang mereka gunakan di masyarakat. Berikut ini merupakan contoh dari tidak diterapkannya etika dalam menciptakan nanoteknologi ialah cloning dan suntik mati.
Standar etika sangat diperlukan bagi scientist dalam membuat keputusan agar tidak mengakibatkan masalah yang merugikan banyak pihak.

Evolusi Nanotechnology (Teknologi-Nano)
Nanoteknologi sekarang ini sedang mengalami evolusi yang sangat cepat dalam segala bidang. Perkembangan industripun mengarah kebentuk non konvensional, yang mengelompok dalam bentuk yang lebih futuristik, diantaranya:
·         Produk, sistem dan material yang mengelompok sendiri (Sistem managemen perbaikan sendiri).
·         Miliaran komputer bergerak lebih cepat (Jangkauan ukuran kecepatan komputer).
·         Penciptaan barang secara ekstrim (Pabrik mengadaptasi masalah sendiri)
·         Pergerakan dan eksplorasi tempat lebih realistis (Lebih ekonomis dalam berusaha).
·         Pengobatan secara nano (Kemampuan pergerakan obat lebih unik -nano robot-).
·         Sintesa molekul makanan (Antisipasi kekurangan dan kelaparan di dunia).

Mengamati peta evolusi nano teknologi diatas, kesempatan memulai usaha di bidang nano teknologi akan berakhir 2010. Selanjutnya mulai bermunculan milyarder baru yang mulai mapan situasi produknya dengan kondisi informasi dan traveling yg begitu spektakuler. Produk akan mengalir seperti sungai Amazon.
Jika kita ingin mendapat bagian dari kemajuan teknologi tersebut, kita harus mengerahkan kemampuan untuk berinovasi mengawinkan antara kebutuhan konsumen dengan perkembangan teknologi (material hybrid), terutama produk-produk fast moving dan repeat order. Atau masuk ke dalam bidang teknologi informasi, apapun bentuknya, akan terserap pasar. Disaat pelakunya sedang tidur nyenyak, transaksi produk berjalan menurut hitungan detik. Selamat buat anda yang berada di ‘track’ ini.

Sumber :

Jumat, 20 Mei 2011

Bioinformatika : Perkembangan Ilmu Terkait Dan Penerapannya

DNA (Dioksiribosa Nukleat)

Perkembangan Teknologi dewasa ini telah membantu kehidupan manusia dalam berbagai bidang. Hampir setiap pekerjaan, tak lepas dari adanya komputer dan teknologi. Termasuk juga dalam disiplin ilmu Biologi yang melahirkan dunia kedokteran.
Dunia kedokteran, saat ini telah banyak bekerjasama dengan Dunia IT. Hal tersebut dibuktikan dengan lahirnya suatu konsep teknologi yang disebut “Bioinformatika”. Secara eksplisit, Bioinformatika merupakan penggabungan antara disiplin ilmu biologi molekul dan teknologi. Namun secara implisit, ilmu biologi molekul ini sangat menunjang perkembangan dunia kedokteran. Misalnya dengan penggambaran DNA dan Gen yang dilakukan para pakar ilmu biologi molekul, yang dapat membantu para dokter dalam mengobati pasien. Oleh sebab itu Bioinformatika sangat erat kaitannya dengan dunia kedokteran.
Ilmu bioinformatika lahir atas insiatif para ahli ilmu komputer berdasarkanartificial intelligence. Mereka berpikir bahwa semua gejala yang ada di alam ini bisa dibuat secara artificial melalui simulasi dari gejala-gejala tersebut. Untuk mewujudkan hal ini diperlukan data-data yang yang menjadi kunci penentu tindak-tanduk gejala alam tersebut, yaitu gen yang meliputi DNA atau RNA. Bioinformatika ini penting untuk manajemen data-data dari dunia biologi dan kedokteran modern. Perangkat utama Bioinformatika adalah program software dan didukung oleh kesediaan internet.

Definisi Bioinformatika
Bioinformatika, sesuai dengan asal katanya yaitu “bio” dan “informatika”, adalah gabungan antara ilmu biologi dan ilmu teknik informasi (TI). Pada umumnya, Bioinformatika didefenisikan sebagai aplikasi dari alat komputasi dan analisa untuk menangkap dan menginterpretasikan data-data biologi. Ilmu ini merupakan ilmu baru yang yang merangkup berbagai disiplin ilmu termasuk ilmu komputer, matematika dan fisika, biologi, dan ilmu kedokteran, dimana kesemuanya saling menunjang dan saling bermanfaat satu sama lainnya.
Bioinformatika merupakan kajian yang memadukan disiplin biologi molekul,
matematika dan teknik informasi (TI). Ilmu ini didefinisikan sebagai aplikasi dari alat komputasi dan analisa untuk menangkap dan menginterpretasikan data-data biologi molekul. Biologi molekul sendiri juga merupakan bidang interdisipliner, mempelajari kehidupan dalam level molekul.
Bioinformatika adalah bidang yang menggunakan komputer untuk menyimpan dan menganalisis informasi biologi molekuler. Menggunakan informasi ini dalam format digital, bioinformatika kemudian dapat memecahkan masalah molekuler biologi , memprediksi struktur, dan bahkan simulasi makromolekul.

Pengertian bioinformatika juga dibedakan menjadi secara “klasik” dan “baru”. Hal ini tak lepas dari adanya perkembangan bioinformatika itu sendiri. Berikut akan dejelaskan selengkapnya.

Bioinformatika “Klasik”
Sebagian besar ahli Biologi mengistilahkan ‘mereka sedang melakukan Bioinformatika’ ketika mereka sedang menggunakan komputer untuk menyimpan, melihat atau mengambil data, menganalisa atau memprediksi komposisi atau struktur dari biomolekul. Ketika kemampuan komputer menjadi semakin tinggi maka proses yang dilakukan dalam Bioinformatika dapat ditambah dengan melakukan simulasi. Yang termasuk biomolekul diantaranya adalah materi genetik dari manusia –asam nukleat– dan produk dari gen manusia, yaitu protein. Hal-hal diataslah yang merupakan bahasan utama dari Bioinformatika “klasik”, terutama berurusan dengan analisis sekuen (sequence analysis).
Definisi Bioinformatika menurut Fredj Tekaia dari Institut Pasteur [TEKAIA2004] adalah: “metode matematika, statistik dan komputasi yang bertujuan untuk menyelesaikan masalah masalah biologi dengan menggunakan sekuen DNA dan asam amino dan informasi-informasi yang terkait dengannya.” Dari sudut pandang Matematika, sebagian besar molekul biologi mempunyai sifat yang menarik, yaitu molekul-molekul tersebut adalah polymer; rantai-rantai yang tersusun rapi dari modul-modul molekul yang lebih sederhana, yang disebut monomer. Monomer dapat dianalogikan sebagai bagian dari bangunan, dimana meskipun bagianbagian tersebut berbeda warna dan bentuk, namun semua memiliki ketebalan yang sama dan cara yang sama untuk dihubungkan antara yang satu dengan yang lain. Monomer yang dapat dikombinasi dalam satu rantai ada dalam satu kelas umum yang sama, namun tiap jenis monomer dalam kelas tersebut mempunyai karakteristik masing-masing yang terdefinisi dengan baik. Beberapa molekul-molekul monomer dapat digabungkan bersama membentuk sebuah entitas yang berukuran lebih besar, yang disebut macromoleculeMacromolecule dapat mempunyai informasi isi tertentu yang menarik dan sifat-sifat kimia tertentu. Berdasarkan skema di atas, monomer-monomer tertentu dalam macromolecule dari DNA dapat diperlakukan secara komputasi sebagai huruf-huruf dari alfabet, yang diletakkan dalam sebuah aturan yang telah diprogram sebelumnya untuk membawa pesan atau melakukan kerja di dalam sel.
Proses yang diterangkan di atas terjadi pada tingkat molekul di dalam sel. Salah satu cara untuk mempelajari proses tersebut selain dengan mengamati dalam laboratorium biologi yang sangat khusus adalah dengan menggunakan Bioinformatika sesuai dengan definisi “klasik” yang telah disebutkan di atas.

Bioinformatika “baru”
Salah satu pencapaian besar dalam metode Bioinformatika adalah selesainya proyek pemetaan genom manusia (Human Genome Project). Selesainya proyek raksasa tersebut menyebabkan bentuk dan prioritas dari riset dan penerapan Bioinformatika berubah. Secara umum dapat dikatakan bahwa proyek tersebut membawa perubahan besar pada sistem hidup kita, sehingga sering disebutkan –terutama oleh ahli biologi–bahwa kita saat ini berada di masa pascagenom. Selesainya proyek pemetaan genom manusia ini membawa beberapa perubahan bagi Bioinformatika, diantaranya: Setelah memiliki beberapa genom yang utuh maka kita dapat mencari perbedaan dan persamaan di antara gen-gen dari spesies yang berbeda. Dari studi perbandingan antara gen-gen tersebut dapat ditarik kesimpulan tertentu mengenai spesies-spesies dan secara umum mengenai evolusi. Jenis cabang ilmu ini sering disebut sebagai perbandingan genom (comparative genomics). Sekarang ada teknologi yang didisain untuk mengukur jumlah relatif dari kopi/cetakan sebuah pesan genetik (level dari ekspresi genetik) pada beberapa tingkatan yang berbeda pada perkembangan atau penyakit atau pada jaringan yang berbeda. Teknologi tersebut, contohnya seperti DNA microarrays akan semakin penting. Akibat yang lain, secara langsung, adalah cara dalam skala besar untuk mengidentifikasi fungsi-fungsi dan keterkaitan dari gen (contohnya metodeyeast twohybrid) akan semakin tumbuh secara signifikan dan bersamanya akan mengikuti Bioinformatika yang berkaitan langsung dengan kerja fungsi genom (functional genomics).
Akan ada perubahan besar dalam penekanan dari gen itu sendiri ke hasil-hasil dari gen. Yang pada akhirnya akan menuntun ke: usaha untuk mengkatalogkan semua aktivitas dan karakteristik interaksi antara semua hasil-hasil dari gen (pada manusia) yang disebut proteomics; usaha untuk mengkristalisasi dan memprediksikan struktur-struktur dari semua protein (pada manusia) yang disebut structural genomics. Apa yang disebut orang sebagai research informatics atau medical informatics, manajemen dari semua data eksperimen biomedik yang berkaitan dengan molekul atau pasien tertentu –mulai dari spektroskop massal, hingga ke efek samping klinis—akan berubah dari semula hanya merupakan kepentingan bagi mereka yang bekerja di perusahaan obat-obatan dan bagian TI Rumah Sakit akan menjadi jalur utama dari biologi molekul dan biologi sel, dan berubah jalur dari komersial dan klinikal ke arah akademis.
Dari uraian di atas terlihat bahwa Bioinformatika sangat mempengaruhi kehidupan manusia, terutama untuk mencapai kehidupan yang lebih baik. Penggunaan komputer yang notabene merupakan salah satu keahlian utama dari orang yang bergerak dalam TI merupakan salah satu unsur utama dalam Bioinformatika, baik dalam Bioinformatika “klasik” maupun Bioinformatika “baru”.

Cabang-cabang yang Terkait dengan Bioinformatika
Dari pengertian Bioinformatika baik yang klasik maupun baru, terlihat banyak terdapat cabang-cabang disiplin ilmu yang terkait dengan Bioinformatika (terutama karena Bioinformatika itu sendiri merupakan suatu bidang interdisipliner). Hal tersebut menimbulkan banyak pilihan bagi orang yang ingin mendalami Bioinformatika. Di bawah ini akan disebutkan beberapa bidang yang terkait dengan Bioinformatika.

Biophysics
Biologi molekul sendiri merupakan pengembangan yang lahir daribiophysicsBiophysics adalah sebuah bidang interdisipliner yang mengaplikasikan teknik-teknik dari ilmu Fisika untuk memahami struktur dan fungsi biologi (British Biophysical Society). Sesuai dengan definisi di atas, bidang ini merupakan suatu bidang yang luas. Namun secara langsung disiplin ilmu ini terkait dengan Bioinformatika karena penggunaan teknik-teknik dari ilmu Fisika untuk memahami struktur membutuhkan penggunaan TI.

Computational Biology
Computational biology merupakan bagian dari Bioinformatika (dalam arti yang paling luas) yang paling dekat dengan bidang Biologi umum klasik. Fokus dari computational biology adalah gerak evolusi, populasi, dan biologi teoritis daripada biomedis dalam molekul dan sel. Tak dapat dielakkan bahwa Biologi Molekul cukup penting dalam computational biology, namun itu bukanlah inti dari disiplin ilmu ini. Pada penerapan computational biology, model-model statistika untuk fenomena biologi lebih disukai dipakai dibandingkan dengan model sebenarnya. Dalam beberapa hal cara tersebut cukup baik mengingat pada kasus tertentu eksperimen langsung pada fenomena biologi cukup sulit. Tidak semua dari computational biologymerupakan Bioinformatika, seperti contohnya Model Matematika bukan merupakan Bioinformatika, bahkan meskipun dikaitkan dengan masalah biologi.

Medical Informatics
Menurut Aamir Zakaria [ZAKARIA2004] Pengertian dari medical informaticsadalah “sebuah disiplin ilmu yang baru yang didefinisikan sebagai pembelajaran, penemuan, dan implementasi dari struktur dan algoritma untuk meningkatkan komunikasi, pengertian dan manajemen informasi medis.” Medical informatics lebih memperhatikan struktur dan algoritma untuk
pengolahan data medis, dibandingkan dengan data itu sendiri. Disiplin ilmu ini, untuk alasan praktis, kemungkinan besar berkaitan dengan data-data yang didapatkan pada level biologi yang lebih “rumit” (yaitu informasi dari sistem-sistem superselular, tepat pada level populasi) di mana sebagian besar dari Bioinformatika lebih memperhatikan informasi dari sistem dan struktur biomolekul dan selular.

Cheminformatics
 Cheminformatics adalah kombinasi dari sintesis kimia, penyaringan biologis, dan pendekatan data-mining yang digunakan untuk penemuan dan pengembangan obat (Cambridge Healthech Institute’s Sixth Annual Cheminformatics conference). Pengertian disiplin ilmu yang disebutkan di atas lebih merupakan identifikasi dari salah satu aktivitas yang paling populer dibandingkan dengan berbagai bidang studi yang mungkin ada di bawah bidang ini. Salah satu contoh penemuan obat yang paling sukses sepanjang sejarah adalah penisilin, dapat menggambarkan cara untuk menemukan dan mengembangkan obatobatan hingga sekarang –meskipun terlihat aneh–. Cara untuk menemukan dan mengembangkan obat adalah hasil dari kesempatan, observasi, dan banyak proses kimia yang intensif dan lambat. Sampai beberapa waktu yang lalu, disain obat dianggap harus selalu menggunakan kerja yang intensif, proses uji dan gagal (trial-error process).
Kemungkinan penggunaan TI untuk merencanakan secara cerdas dan dengan mengotomatiskan proses-proses yang terkait dengan sintesis kimiawi dari komponenkomponen pengobatan merupakan suatu prospek yang sangat menarik bagi ahli kimia dan ahli biokimia. Penghargaan untuk menghasilkan obat yang dapat dipasarkan secara lebih cepat sangatlah besar, sehingga target inilah yang merupakan inti dari cheminformatics.
Ruang lingkup akademis dari cheminformatics ini sangat luas. Contoh bidang minatnya antara lain: Synthesis Planning, Reaction and Structure Retrieval, 3-D Structure Retrieval, Modelling, Computational Chemistry, Visualisation Tools and Utilities.

Genomics
Genomics adalah bidang ilmu yang ada sebelum selesainya sekuen genom, kecuali dalam bentuk yang paling kasar. Genomics adalah setiap usaha untuk menganalisa atau membandingkan seluruh komplemen genetik dari satu spesies atau lebih. Secara logis tentu saja mungkin untuk membandingkan genom-genom dengan membandingkan kurang lebih suatu himpunan bagian dari gen di dalam genom yang representatif.

Program-program Bioinformatika
Sehari-harinya bionformatika dikerjakan dengan menggunakan program pencari sekuen (sequence search) seperti BLAST, program analisa sekuen (sequence analysis) seperti EMBOSS dan paket Staden, program prediksi struktur seperti THREADER atau PHD atau program imaging/modellingseperti RasMol dan WHATIF. Contoh-contoh di atas memperlihatkan bahwa telah banyak program pendukung yang mudah di akses dan dipelajari untuk menggunakan Bioinformatika

Teknologi Bioinformatika Secara Umum
Pada saat ini banyak pekerjaan Bioinformatika berkaitan dengan teknologi database. Penggunaan database ini meliputi baik tempat penyimpanan database “umum” seperti GenBank atau PDB maupun database “pribadi”, seperti yang digunakan oleh grup riset yang terlibat dalam proyek pemetaan gen atau database yang dimiliki oleh perusahaan-perusahaan bioteknologi. Konsumen dari data Bioinformatika menggunakan platform jenis komputer dalam kisaran: mulai dari mesin UNIX yang lebih canggih dan kuat yang dimiliki oleh pengembang dan kolektor hingga ke mesin Mac yang lebih bersahabat yang sering ditemukan menempati laboratorium ahli biologi yang tidak suka komputer.
Database dari sekuen data yang ada dapat digunakan untuk mengidentifikasi homolog pada molekul baru yang telah dikuatkan dan disekuenkan di laboratorium. Dari satu nenek moyang mempunyai sifat-sifat yang sama, atau homology, dapat menjadi indikator yang sangat kuat di dalam Bioinformatika.
Setelah informasi dari database diperoleh, langkah berikutnya adalah menganalisa data. Pencarian database umumnya berdasarkan pada hasil alignment / pensejajaran sekuen, baik sekuen DNA maupun protein. Kegunaan dari pencarian ini adalah ketika mendapatkan suatu sekuen DNA/protein yang belum diketahui fungsinya maka dengan membandingkannya dengan yang ada dalam database bisa diperkirakan fungsi daripadanya. Salah satu perangkat lunak pencari database yang paling berhasil dan bisa dikatakan menjadi standar sekarang adalah BLAST (Basic Local Alignment Search Tool) yang merupakan program pencarian kesamaan yang didisain untuk mengeksplorasi semua database sekuen yang diminta, baik itu berupa DNA atau protein. Program BLAST juga dapat digunakan untuk mendeteksi hubungan di antara sekuen yang hanya berbagi daerah tertentu yang memiliki kesamaan. Di bawah ini diberikan contoh beberapa alamat situs yang berguna untuk bidang biologi molekul dan genetika:

Data yang memerlukan analisa Bioinformatika dan mendapat banyak perhatian saat ini adalah data hasil DNA chip. Dengan perangkat ini dapat diketahui kuantitas dan kualitas transkripsi satu gen sehingga bisa menunjukkan gen-gen apa saja yang aktif terhadap perlakuan tertentu, misalnya timbulnya kanker, dan lain-lain.

Penerapan Bioinformatika di Indonesia
Sebagai kajian yang masih baru, Indonesia seharusnya berperan aktif dalam mengembangkan Bioinformatika ini. Paling tidak, sebagai tempat tinggal lebih dari 300 suku bangsa yang berbeda akan menjadi sumber genom, karena besarnya variasi genetiknya. Belum lagi variasi species flora maupun fauna yang berlimpah.
Memang ada sejumlah pakar yang telah mengikuti perkembangan Bioinformatika ini, misalnya para peneliti dalam Lembaga Biologi Molekul Eijkman. Mereka cukup berperan aktif dalam memanfaatkan kajian Bioinformatika. Bahkan, lembaga ini telah memberikan beberapa sumbangan cukup berarti, antara lain:

Deteksi Kelainan Janin
Lembaga Biologi Molekul Eijkman bekerja sama dengan Bagian Obstetri dan Ginekologi Fakultas Kedokteran Universitas Indonesia dan Rumah Sakit Cipto Mangunkusumo sejak November 2001 mengembangkan klinik genetik untuk mendeteksi secara dini sejumlah penyakit genetik yang menimbulkan gangguan pertumbuhan fisik maupun retardasi mental seperti antara lain, talasemia dan sindroma down. Kelainan ini bisa diperiksa sejak janin masih berusia beberapa minggu.
Talasemia adalah penyakit keturunan di mana tubuh kekurangan salah satu zat pembentuk hemoglobin (Hb) sehingga mengalami anemia berat dan perlu transfusi darah seumur hidup. Sedangkan sindroma down adalah kelebihan jumlah untaian di kromosom 21 sehingga anak tumbuh dengan retardasi mental, kelainan jantung, pendengaran dan penglihatan buruk, otot lemah serta kecenderungan menderita kanker sel darah putih (leukemia).
Dengan mengetahui sejak dini, pasangan yang hendak menikah, atau pasangan yang salah satunya membawa kelainan kromosom, atau pasangan yang mempunyai anak yang menderita kelainan kromosom, atau penderita kelainan kromosom yang sedang hamil, atau ibu yang hamil di usia tua bisa memeriksakan diri dan janin untuk memastikan apakah janin yang dikandung akan menderita kelainan kromosom atau tidak, sehingga mempunyai kesempatan untuk mempertimbangkan apakah kehamilan akan diteruskan atau tidak setelah mendapat konseling genetik tentang berbagai kemungkinan yang akan terjadi.
Di bidang talasemia, Eijkman telah memiliki katalog 20 mutasi yang mendasari talasemia beta di Indonesia, 10 di antaranya sering terjadi. Lembaga ini juga mempunyai informasi cukup mengenai spektrum mutasi di berbagai suku bangsa yang sangat bervariasi. Talasemia merupakan penyakit genetik terbanyak di dunia termasuk di Indonesia.

Pengembangan Vaksin Hepatitis B Rekombinan
Lembaga Biologi Molekul Eijkman bekerja sama dengan PT Bio Farma (BUMN Departemen Kesehatan yang memproduksi vaksin) sejak tahun 1999 mengembangkan vaksin Hepatitis B rekombinan, yaitu vaksin yang dibuat lewat rekayasa genetika. Selain itu Lembaga Eijkman juga bekerja sama dengan PT Diagnosia Dipobiotek untuk mengembangkan kit diagnostik.

Meringankan Kelumpuhan dengan Rekayasa RNA
Kasus kelumpuhan distrofi (Duchenne Muscular Dystrophy) yang menurun kini dapat dikurangi tingkat keparahannya dengan terapi gen. Kelumpuhan ini akibat ketidaknormalan gen distrofin pada kromosom X sehingga hanya diderita anak laki-laki. Diperkirakan satu dari 3.500 pria di dunia mengalami kelainan ini. Dengan memperbaiki susunan ekson atau bagian penyusun RNA gen tersebut pada hewan percobaan tikus, terbukti mengurangi tingkat kelumpuhan saat pertumbuhannya menjadi dewasa.
Gen distrofin pada kasus kelumpuhan paling sering disebabkan oleh delesi atau hilangnya beberapa ekson pada gen tersebut. Normalnya pada gen atau DNA distrofin terdapat 78 ekson. Diperkirakan 65 persen pasien penderita DMD mengalami delesi dalam jumlah besar dalam gen distrofinnya. Kasus kelumpuhan ini dimulai pada otot prosima seperti pangkal paha dan betis. Dengan bertambahnya usia kelumpuhan akan meluas pada bagian otot lainnya hingga ke leher. Karena itu dalam kasus kelumpuhan yang berlanjut dapat berakibat kematian.
Teknologi rekayasa RNA seperti proses penyambungan (slicing) ekson dalam satu rangkaian terbukti dapat mengoreksi mutasi DMD. Bila bagian ekson yang masih ada disambung atau disusun ulang, terjadi perubahan asam amino yang membentuk protein. Molekul RNA mampu mengenali molekul RNA lainnya dan melekat dengannya.

Kesimpulan:
Bioinformatika adalah penggabungan ilmu biologi molekul dengan Teknologi, khususnya IT. Bioinformatika sangat membantu untuk dunia kedokteran, misalnya dalam mendeskripsikan DNA dan genom. Selain itu juga dapat membantu penelitian penyakit-penyakit baru yang menyerang manusia sehingga dapat memaksimalkan pengobatan secepat mungkin kepada pasien. Dengan adalanya bioinformatika ini, kehidupan manusia dapat terbantu. Bioinformatika semakin lama semakin berkembang seiring semakin canggihnya teknologi dan pengetahuan manusia dalam bidang kedokteran. Hal ini dibuktikan dengan semakin banyaknya program-program bioinformatika yang terdapat di internet baik yang berbayar maupun yang gratis. Semoga dengan adanya konsep bioinformatika ini kedepannya dapat membantu menjaga kesehatan manusia.

Sumber :